361 research outputs found

    Faraday rotation: effect of magnetic field reversals

    Full text link
    The standard formula for the rotation measure, RM, which determines the position angle, ψ=RMλ2\psi={\rm RM}\lambda^2, due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution Δψ\Delta\psi needed to correct this omission. In contrast with a result proposed by \cite{BB10}, Δψ\Delta\psi is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.Comment: 25 pages 1 figure, accepted for publication in The Astrophysical Journa

    Invariant imbedding theory of mode conversion in inhomogeneous plasmas. II. Mode conversion in cold, magnetized plasmas with perpendicular inhomogeneity

    Full text link
    A new version of the invariant imbedding theory for the propagation of coupled waves in inhomogeneous media is applied to the mode conversion of high frequency electromagnetic waves into electrostatic modes in cold, magnetized and stratified plasmas. The cases where the external magnetic field is applied perpendicularly to the direction of inhomogeneity and the electron density profile is linear are considered. Extensive and numerically exact results for the mode conversion coefficients, the reflectances and the wave electric and magnetic field profiles inside the inhomogeneous plasma are obtained. The dependences of mode conversion phenomena on the magnitude of the external magnetic field, the incident angle and the wave frequency are explored in detail.Comment: 11 figures, to be published in Physics of Plasma

    Understanding the Geometry of Astrophysical Magnetic Fields

    Full text link
    Faraday rotation measurements have provided an invaluable technique with which to measure the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13 (RM/rad m^-2)^(1/4) (B/G)^(1/2) MHz, the character of Faraday rotation changes, entering what we term the ``super-adiabatic regime'' in which the rotation measure is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing rotation measures at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, nu_SA, depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of nu_SA range from 10 kHz to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved AGN, including the black holes at the center of the Milky Way (Sgr A*) and M81, nu_SA ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.Comment: 13 pages, 5 figures, submitted to Ap

    RoboCup 2D Soccer Simulation League: Evaluation Challenges

    Full text link
    We summarise the results of RoboCup 2D Soccer Simulation League in 2016 (Leipzig), including the main competition and the evaluation round. The evaluation round held in Leipzig confirmed the strength of RoboCup-2015 champion (WrightEagle, i.e. WE2015) in the League, with only eventual finalists of 2016 competition capable of defeating WE2015. An extended, post-Leipzig, round-robin tournament which included the top 8 teams of 2016, as well as WE2015, with over 1000 games played for each pair, placed WE2015 third behind the champion team (Gliders2016) and the runner-up (HELIOS2016). This establishes WE2015 as a stable benchmark for the 2D Simulation League. We then contrast two ranking methods and suggest two options for future evaluation challenges. The first one, "The Champions Simulation League", is proposed to include 6 previous champions, directly competing against each other in a round-robin tournament, with the view to systematically trace the advancements in the League. The second proposal, "The Global Challenge", is aimed to increase the realism of the environmental conditions during the simulated games, by simulating specific features of different participating countries.Comment: 12 pages, RoboCup-2017, Nagoya, Japan, July 201

    Electromagnetic modes of Maxwell fisheye lens

    Full text link
    We provide an analysis of the radial structure of TE and TM modes of the Maxwell fisheye lens, by means of Maxwell equations as applied to the fisheye case. Choosing a lens of size R = 1 cm, we plot some of the modes in the infrared range.Comment: 2+6 pages in Latex, 3 figures to be found in the published referenc

    Finite element method for the design of implants for temporal hollowing

    Get PDF
    Temporal indentations are the most impacting craniofacial complication after coronal flap dissection. It is mainly due to a temporal fat pad or temporalis muscle dissection. Because of the great improvements achieved recently in CAD-CAM-aided surgery and the possibility of performing accurate pre-surgical virtual planning, it is now possible to correct it with a customised virtual approach. Furthermore, advancements in material science have allowed surgeons to rely on biocompatible materials like PEEK (showing a low complication and recurrence rate) for the manufacturing of patient-specific implants. We hereby describe our experience on a case of secondary and corrective surgery after a fronto-orbital remodelling, in which we used PEEK implants designed by CAD and optimized by finite element modelling

    Theory of the propagation of coupled waves in arbitrarily-inhomogeneous stratified media

    Full text link
    We generalize the invariant imbedding theory of the wave propagation and derive new invariant imbedding equations for the propagation of arbitrary number of coupled waves of any kind in arbitrarily-inhomogeneous stratified media, where the wave equations are effectively one-dimensional. By doing this, we transform the original boundary value problem of coupled second-order differential equations to an initial value problem of coupled first-order differential equations, which makes the numerical solution of the coupled wave equations much easier. Using the invariant imbedding equations, we are able to calculate the matrix reflection and transmission coefficients and the wave amplitudes inside the inhomogeneous media exactly and efficiently. We establish the validity and the usefulness of our results by applying them to the propagation of circularly-polarized electromagnetic waves in one-dimensional photonic crystals made of isotropic chiral media. We find that there are three kinds of bandgaps in these structures and clarify the nature of these bandgaps by exact calculations.Comment: 7 pages, 1 figure, to appear in Europhys. Let

    Relativity principles in 1+1 dimensions and differential aging reversal

    Full text link
    We study the behavior of clocks in 1+1 spacetime assuming the relativity principle, the principle of constancy of the speed of light and the clock hypothesis. These requirements are satisfied by a class of Finslerian theories parametrized by a real coefficient β\beta, special relativity being recovered for β=0\beta=0. The effect of differential aging is studied for the different values of β\beta. Below the critical values ∣β∣=1/c|\beta| =1/c the differential aging has the usual direction - after a round trip the accelerated observer returns younger than the twin at rest in the inertial frame - while above the critical values the differential aging changes sign. The non-relativistic case is treated by introducing a formal analogy with thermodynamics.Comment: 12 pages, no figures. Previous title "Parity violating terms in clocks' behavior and differential aging reversal". v2: shortened introduction, some sections removed, pointed out the relation with Finsler metrics. Submitted to Found. Phys. Let
    • …
    corecore